Coordination of distinct but interacting rhythmic motor programs by a modulatory projection neuron using different co-transmitters in different ganglia.
نویسندگان
چکیده
While many neurons are known to contain multiple neurotransmitters, the specific roles played by each co-transmitter within a neuron are often poorly understood. Here, we investigated the roles of the co-transmitters of the pyloric suppressor (PS) neurons, which are located in the stomatogastric nervous system (STNS) of the lobster Homarus americanus. The PS neurons are known to contain histamine; using RT-PCR, we identified a second co-transmitter as the FMRFamide-like peptide crustacean myosuppressin (Crust-MS). The modulatory effects of Crust-MS application on the gastric mill and pyloric patterns, generated in the stomatogastric ganglion (STG), closely resembled those recorded following extracellular PS neuron stimulation. To determine whether histamine plays a role in mediating the effects of the PS neurons in the STG, we bath-applied histamine receptor antagonists to the ganglion. In the presence of the antagonists, the histamine response was blocked, but Crust-MS application and PS stimulation continued to modulate the gastric and pyloric patterns, suggesting that PS effects in the STG are mediated largely by Crust-MS. PS neuron stimulation also excited the oesophageal rhythm, produced in the commissural ganglia (CoGs) of the STNS. Application of histamine, but not Crust-MS, to the CoGs mimicked this effect. Histamine receptor antagonists blocked the ability of both histamine and PS stimulation to excite the oesophageal rhythm, providing strong evidence that the PS neurons use histamine in the CoGs to exert their effects. Overall, our data suggest that the PS neurons differentially utilize their co-transmitters in spatially distinct locations to coordinate the activity of three independent networks.
منابع مشابه
Distinct functions for cotransmitters mediating motor pattern selection.
Motor patterns are selected from multifunctional networks by selective activation of different projection neurons, many of which contain multiple transmitters. Little is known about how any individual projection neuron uses its cotransmitters to select a motor pattern. We address this issue by using the stomatogastric ganglion (STG) of the crab Cancer borealis, which contains a neuronal network...
متن کاملCoordination of fast and slow rhythmic neuronal circuits.
Interactions among rhythmically active neuronal circuits that oscillate at different frequencies are important for generating complex behaviors, yet little is known about the underlying cellular mechanisms. We addressed this issue in the crab stomatogastric ganglion (STG), which contains two distinct but interacting circuits. These circuits generate the gastric mill rhythm (cycle period, approx...
متن کاملIntercircuit control via rhythmic regulation of projection neuron activity.
Synaptic feedback from rhythmically active neuronal circuits commonly causes their descending inputs to exhibit the rhythmic activity pattern generated by that circuit. In most cases, however, the function of this rhythmic feedback is unknown. In fact, generally these inputs can still activate the target circuit when driven in a tonic activity pattern. We are using the crab stomatogastric nervo...
متن کاملDifferent proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network.
Distinct motor patterns are selected from a multifunctional neuronal network by activation of different modulatory projection neurons. Subsets of these projection neurons can contain the same neuromodulator(s), yet little is known about the relative influence of such neurons on network activity. We have addressed this issue in the stomatogastric nervous system of the crab Cancer borealis. Withi...
متن کاملAnatomical Organization of Multiple Modulatory Inputs in a Rhythmic Motor System
In rhythmic motor systems, descending projection neuron inputs elicit distinct outputs from their target central pattern generator (CPG) circuits. Projection neuron activity is regulated by sensory inputs and inputs from other regions of the nervous system, relaying information about the current status of an organism. To gain insight into the organization of multiple inputs targeting a projecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 216 Pt 10 شماره
صفحات -
تاریخ انتشار 2013